V2EX set builder notation

Set Builder Notation

释义 Definition

集合构造式(也称“集合描述法”):一种在数学中用来通过性质/条件来定义集合的记号形式,通常写作
\(\{\, x \mid \text{条件}\,\}\) 或 \(\{\, x : \text{条件}\,\}\),意思是“所有满足条件的 \(x\) 组成的集合”。

发音 Pronunciation (IPA)

/st bldr noten/

例句 Examples

The set {x | x > 0} is written in set builder notation.
集合 \(\{x \mid x>0\}\) 是用集合构造式写出来的。

Using set builder notation, we can define A = {n ∈ | n is even and n ≥ 0} to describe all nonnegative even integers.
用集合构造式,我们可以定义 \(A=\{n\in\mathbb{Z}\mid n\) 是偶数且 \(n\ge 0\}\),来表示所有非负偶整数。

词源 Etymology

“set builder notation”由三部分组成:set(集合)+ builder(构造者/构建)+ notation(记号/表示法)。其含义直观:用某种“构造规则”(即条件/性质)把集合“建出来”。在数学写作中也常见同义说法 set-builder form

相关词 Related Words

文学与经典教材 Literary Works

  • Paul R. Halmos,《Naive Set Theory》:在基础集合论讲解中频繁使用集合构造式来定义集合与关系。
  • Daniel J. Velleman,《How to Prove It: A Structured Approach》:在逻辑与证明入门中用集合构造式配合量词表达集合定义。
  • Kenneth H. Rosen,《Discrete Mathematics and Its Applications》:离散数学章节(集合、关系、函数)中常用该记号进行集合描述。
  • Thomas Jech / Hrbacek & Jech,《Introduction to Set Theory》:在更系统的集合论语境中使用集合构造式表达集合与类的定义。
关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2105 人在线   最高记录 6679       Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 50ms UTC 14:24 PVG 22:24 LAX 06:24 JFK 09:24
Do have faih in what you're doing.
ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86